statmath

معيار المقارنة للمتسلسلات

معيار المقارنة للمتسلسلات
(E: The Comparison Test)

(T: Karşılaştırma Testi)

لتكن لدينا المتسلسلتان:
\[\sum^\infty_{k=1}a_k~~,~~\sum^\infty_{k=1}b_k\]
بحيث أن:
\[a_k \ge 0~,~b_k \ge 0~,~a_k \le b_k\]
عندئذٍ:
1) إذا كانت المتسلسلة \(\sum^\infty_{k=1}b_k\) متقاربة فإن المتسلسلة \(\sum^\infty_{k=1}a_k\) متقاربة.
2) إذا كانت المتسلسلة \(\sum^\infty_{k=1}a_k\) متباعدة فإن المتسلسلة \(\sum^\infty_{k=1}b_k\) متباعدة.

مثال: ادرس تقارب المتسلسلة:
\[\sum^\infty_{k=1}\frac{1}{\ln k}\]
الحل:
بما أن:
\[\ln k \lt k\]
فإن
\[\frac{1}{\ln k}\gt\frac 1k\]
وبما أن المتسلسلة:
\[\sum^\infty_{k=1}\frac{1}{ k}\]
متباعدة حسب المتسلسلة الريمانية فإن المتسلسلة:
\[\sum^\infty_{k=1}\frac{1}{\ln k}\]
متباعدة

مقالات ذات صلة:
تعريف المتتالية العددية
تقارب متتالية
تعريف المتتالية الجزئية
تعريف المتتالية المحدودة
متتالية كوشي
العمليات على النهايات
مبرهنة الحصر للمتتاليات
العمليات على النهايات
حالات عدم التعيين
قاعدة أوبيتال
نهاية تابع
تعريف التابع الأسي \(e^x\)
تعريف التابع اللوغاريتمي \(\ln x\)
تعريف التابع المثلثي \(\sin x \)
تعريف التابع المثلثي \(\cos x \)
تعريف التابع المثلثي \(\tan x\)
تعريف التابع المثلثي \(\cot x\)
تعريف التابع المثلثي \(\sec x\)
تعريف التابع المثلثي \(\csc x\)
تعريف التابع المثلثي العكسي \(\arcsin x\)
تعريف التابع المثلثي العكسي \(\arccos x\)
تعريف التابع المثلثي العكسي \(\arctan x\)
تعريف التابع المثلثي العكسي \(arccot ~x\)
تعريف التابع المثلثي العكسي \(arcsec ~x\)
تعريف التابع المثلثي العكسي \(arccsc ~x\)
تعريف التابع القطعي \(\sinh x\)
تعريف التابع القطعي \(\cosh x\)
تعريف التابع القطعي \(\tanh x\)
تعريف التابع القطعي \(\coth x\)
تعريف التابع القطعي \(sech ~x\)
تعريف التابع القطعي \(csch~ x\)
تعريف التابع القطعي العكسي \( arcsinh~ x\)
تعريف التابع القطعي العكسي \( arccosh~ x\)
تعريف التابع القطعي العكسي \( arctanh~ x\)
تعريف التابع القطعي العكسي \( arccoth~ x\)
تعريف التابع القطعي العكسي \( arcsech~ x\)
تعريف التابع القطعي العكسي \( arccsch~ x\)
نهايات شهيرة
تعريف المتسلسلة
العمليات على المتسلسلات
المتسلسلة الريمانية
المتسلسلة الهندسية
المعيار الصفري لتقارب متسلسلة

معيار المقارنة للمتسلسلات

معيار المقارنة للمتسلسلات(E: The Comparison Test)(T: Karşılaştırma Testi) لتكن لدينا المتسلسلتان:\[\…

المعيار الصفري لتقارب متسلسلة

المعيار الصفري لتقارب متسلسلة لتكن لدينا المتسلسلة:\[\sum^\infty_{k=1}a_k\]إذا كان :\[\lim_{k \right…

المتسلسلة الهندسية

المتسلسلة الهندسية(E: Geometric Series)(T: Geometrik Seri ) وهي متسلسلة من الشكل:\[\sum^\infty_{k=1}…

المتسلسلة الريمانية

المتسلسلة الريمانية(E: Harmonic Series)(T: Harmonik Seri ) وهي متسلسلة من الشكل:\[\sum^\infty_{k=1}\…

العمليات على المتسلسلات

العمليات على المتسلسلات(E: Operations on Series)(T: Seriler Üzerinde İşlemler) لتكن لدينا المتسلسلتا…

المعيار الصفري لتقارب متسلسلة

المعيار الصفري لتقارب متسلسلة

لتكن لدينا المتسلسلة:
\[\sum^\infty_{k=1}a_k\]
إذا كان :
\[\lim_{k \rightarrow \infty}a_k\neq 0\]
فإن المتسلسلة:
\[\sum^\infty_{k=1}a_k\]
تكون متباعدة.

مثال: ادرس تقارب المتسلسلة:
\[\sum^\infty_{k=1}\frac{k}{2k+1}\]
الحل:
نلاحظ أن:
\[\lim_{k \rightarrow \infty}\frac{k}{2k+1}=\frac 12 \]
وبالتالي فإن المتسلسلة:
\[\sum^\infty_{k=1}\frac{k}{2k+1}\]
متباعدة.

مقالات ذات صلة:
تعريف المتتالية العددية
تقارب متتالية
تعريف المتتالية الجزئية
تعريف المتتالية المحدودة
متتالية كوشي
العمليات على النهايات
مبرهنة الحصر للمتتاليات
العمليات على النهايات
حالات عدم التعيين
قاعدة أوبيتال
نهاية تابع
تعريف التابع الأسي \(e^x\)
تعريف التابع اللوغاريتمي \(\ln x\)
تعريف التابع المثلثي \(\sin x \)
تعريف التابع المثلثي \(\cos x \)
تعريف التابع المثلثي \(\tan x\)
تعريف التابع المثلثي \(\cot x\)
تعريف التابع المثلثي \(\sec x\)
تعريف التابع المثلثي \(\csc x\)
تعريف التابع المثلثي العكسي \(\arcsin x\)
تعريف التابع المثلثي العكسي \(\arccos x\)
تعريف التابع المثلثي العكسي \(\arctan x\)
تعريف التابع المثلثي العكسي \(arccot ~x\)
تعريف التابع المثلثي العكسي \(arcsec ~x\)
تعريف التابع المثلثي العكسي \(arccsc ~x\)
تعريف التابع القطعي \(\sinh x\)
تعريف التابع القطعي \(\cosh x\)
تعريف التابع القطعي \(\tanh x\)
تعريف التابع القطعي \(\coth x\)
تعريف التابع القطعي \(sech ~x\)
تعريف التابع القطعي \(csch~ x\)
تعريف التابع القطعي العكسي \( arcsinh~ x\)
تعريف التابع القطعي العكسي \( arccosh~ x\)
تعريف التابع القطعي العكسي \( arctanh~ x\)
تعريف التابع القطعي العكسي \( arccoth~ x\)
تعريف التابع القطعي العكسي \( arcsech~ x\)
تعريف التابع القطعي العكسي \( arccsch~ x\)
نهايات شهيرة
تعريف المتسلسلة
العمليات على المتسلسلات
المتسلسلة الريمانية
المتسلسلة الهندسية

معيار المقارنة للمتسلسلات

معيار المقارنة للمتسلسلات(E: The Comparison Test)(T: Karşılaştırma Testi) لتكن لدينا المتسلسلتان:\[\…

المعيار الصفري لتقارب متسلسلة

المعيار الصفري لتقارب متسلسلة لتكن لدينا المتسلسلة:\[\sum^\infty_{k=1}a_k\]إذا كان :\[\lim_{k \right…

المتسلسلة الهندسية

المتسلسلة الهندسية(E: Geometric Series)(T: Geometrik Seri ) وهي متسلسلة من الشكل:\[\sum^\infty_{k=1}…

المتسلسلة الريمانية

المتسلسلة الريمانية(E: Harmonic Series)(T: Harmonik Seri ) وهي متسلسلة من الشكل:\[\sum^\infty_{k=1}\…

العمليات على المتسلسلات

العمليات على المتسلسلات(E: Operations on Series)(T: Seriler Üzerinde İşlemler) لتكن لدينا المتسلسلتا…